USA jobs

5 Strategies for Trading Volatility With Options

Other Post You May Be Interested In

ngbq0J3CPsi/2ounv3sRS1Vy19kalSaehWSb71ShrLHAzwyW3lKPMR7hCH2ZtJV7I12HaKhy1x5kJ1Lra0nhjgeOB75HuGXZIZLv31Q9avnRTIBx1wabAaJS4+JflZB+2WeG6WYsC7GffAY8qry5DtFW6o1LOFINSjPEzPKYFAfkleW9Sk9rBf+0yP0Bd7O2dkWhfdSh9uOxGQbr7yyMyQgiM8cC3Tzbg+3qTQ3mjTRq3JlSssm0R3YWtm4ZmRYpNK1Fh4cBc7CVOCwmpUedITHKpMa0h1WYkqwMyxPsFjgPdZ6zi7K1aHWq7LhIj67g1kvEvXCM8klkaDPAiM8f3DVm8nL9pLtUccsjaFtbbZ0/KU64bSch1Cyyt4zSoyLd7I9jFha0Uo41QiutYtqWg2FMvYmRkWf8oREWffx+ISyDLcoSThwWqNBXIkIWlSqicglmnHPjiZJLP2cPqHrisQKSrXpjrUCTJjPK6GKXrrJkZkZLSZmZYnmzFvjNuJnrg1Jm4666yj9Pu2ebq0FqorJ2FJjE+tSHm0qSo2jVk5JKMzwPNjhgYjx2TrTpuPRYJqZy1k3lOoJSkpx3EmeJ5i3hMqWllddoleKdDTEbpiGHDVJbSpC0smgyNJnlbpbw9cmdTZM2BXafGprpQywNx6om2bJpUoz/J4+yLPjmI8cRdW19fzU5faINGsLaqXFbmR6VlNPIy2z19sjUn4iNWP1CjNsjaGn6wcqnGnolRoayHELxUWcy9iZ4fvE6YrUXplZg01Fltppj2aUvESWz+PPm/eKNk67TYtOacqsttZnUDMstzFScpDvst/Dcz/ABkLjNvh84S7deFv6QiVZeuQzaJ+ERa87rKMl1C/Z44YHkmeH7x4p0CXTJjkCczrT7R5K0GZHge7ulmE4qqyhwXKZHRTYZzJiFIebqCn1GrKzOZjPI38+BiH1pl9irvsyqgmc6lZEqQleWTmYs+J7oxnr0aqdWZqvSiwNGdRH1955CGGWzXkkpajMiI1YHgXx4H4B7ytVKjtVBup0ttuZAQ24bTEg3W1IWaiSeWaEmWdCsfY727jmsVOjuru/s/MaacdKCtmS4lCcpRoSozPAizmfxELvQdardZqtW6Fd6CfjsRUpkMKbNakKcUrFKyIzLBac+HZCZueu7/JtjPXWN3vodefqkmRDlRoiHGCSrLiSjkNKI+xlGhGB/FgLyPJTqRSqQ2pmlU6NEQs8VJYbJBGe+eA9Y1WYAACKAAAAts5CTqkRw0llFHfIj7JEZt4/wAiFyFunfpGN/gP/wA2wHvp1GnVVLqoLaXDZIjNOVgZl8WOYWisoW1TJ6HEmlSYzxGRlgZewMSeylfi0E5L0hK1qWkiQhJbucWG1dSXVWKnNW0hs3I7x5KCw/3D+kBg6FmhR/8ACR9khWFGF+Zx/wDBR9khWAZu1IXutJ8RXxjY6Wt9a9Q8Qe4sxzS1IXutJ8RXxjY6Wt9a9Q8Qe4sxKLVqdesKN4OQA1OvWFG8HIApGs/qiPWfZ352PiXBoiN7vVEes+zvzsfEuDREAAAAAAAAAAAF3s5aiqWWkuy6U1TVuPI1tRTqXFnJwxxzJkNrSk826REfYxFoABKazeRaWvU52lz41nkMPGk1HFs3ToruYyMsHGWErTnLPgosSzHmMeSvW5tPaSBEpVVqDfQMEjJiLGisxWUmeGKshlKUmo8lOKjIzPAsTzCwgF3mKTa5gAAAAAAAAAAAAAAAAPhxlp3DXEErDcHx0HG95IVgAfiUpQkkpLAiH6AAAAAAAAAAAAAAACbXW3oLuzfrBrs29VEVToZSVNS22sg2yWRkZK3fbCf7aRPe8maSZGCgAZ120ie95M0kyG2kT3vJmkmRgoAGddtInveTNJMhtpE97yZpJkYKABnXbSJ73kzSTIbaRPe8maSZGCgAe6vVddoK/VrQOQjidM5zklLCnEuGhKiTgRmnMe4PCAALK5UY8WozTV0JIbfU0Zf7c22aVJRkmRkZ47uI/enUHuGJpNrnC7WbiRXaaa3YzS1HIfxNSCM/7RQunQMEv/wbHkyARXp1B7hiaTa5wdOoPcMTSbXOEnZj0yQjXGI8ZaccMSbLkH30BB7jY8mQCK9OoPcMTSbXODp1B7hiaTa5wlXQEHuNjyZD10qzblcqDFKpFGTLmSVk2yy0yRqWo9wiIJM8Etk3qFdOoPcMTSbXODp1B7hiaTa5wl8qjswpDkSXTWmnmlGlaFNERpPeMUugIPcbHkyCXO8assuKivTqD3DE0m1zg6dQe4Ymk2ucJV0BB7jY8mQdAQe42PJkCIr06g9wxNJtc4OnUHuGJpNrnCVdAQe42PJkHQEHuNjyZAIr06g9wxNJtc4fSa9FRhkRYycDMywqjZYHhh229mEo6Ag9xseTIOgIPcbHkyARXp1B7hiaTa5wdOoPcMTSbXOEq6Ag9xseTIOgIPcbHkyARyNVmZs9nKVFZSzHcaQlMxtxSlKU2ZERJPHcQYuQ89pmIsZNNdbYbb/29BGaUER4ZC94V0qSssUniQD7QtTa0uJwxSZGWJEZfQeYx6qhVqhVTbOa+SktJyW0IQltCC+JKSJJfuIeMAH2y8uO6l5skGpB4lloJRfvIyMj/ePTU6vUKw8l+oPJWpCSQgkNpbSlJbhElJERF4CHjAAAAAXTqkqXvVO0bG5goTatLntEzIRFJJKyi1qI00eOB9lCSPDPubg8QAA+kYZacdzEh8gAlVnLwHaFQ4dIcoDjqoretmtMpsiVn3cBctlVXBp3ztsQMAE82VVcGnfO2w2VVcGnfO2xAwATzZVVwad87bDZVVwad87bEDABPNlVXBp3ztsNlVXBp3ztsQMAE82VVcGnfO2x4Jt48l+oxZjdnnibZZebUjoxv2RrNBkf7sg/pESABL9kt3gxI89aFKZeK/JhyIyLNPpU80tsjOY0ZFlJMsfrEVAB8MtqaYaaVhlIbQk8DxzkRD7AAGbtSF7rSfEV8Y2OlrfWvUPEHuLMc0tSF7rSfEV8Y2OlrfWvUPEHuLMSi1anXrCjeDkANTr1hRvByAKRrP6oj1n2d+dj4lwaIje71RHrPs787HxLg0RAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV7GxnJsVmG0602t+Y60lbyjJtJqeURGoyIzIixz4EZ4dgxnih6mO0MW1EZq3FZpvUuxETVZ1Si5RoWwRZRspSZZRmecjMy3M+GPsRgKzH6K/zD/GqGQnb0bav2LTYF6sLVR0KyiaMvZYZWVk5W7k4njgA9N7tobG2mtk9ULDUFdLpyGksGS1JxkLSpX5YyIvY4pNJYYn7Xd7BfdzVoLMWZt7Cq1rGz6DbStKXSbyyYdMvYuGnEsSL4jxEHF4stXINn6oU6pWfh1mObam1xZXtTxwzkeBmRlhmMhrRezcs6p2phne1UW8i1VnW5lUtZDvOsm7VkFkwJb0eW0s9cJtJKfawaI8c+BL3MMeyL1ZS5yBZutWUtq3ZKrWXkorjEdcKdVWagTyFGWC0uNpRk7u4aRjazOqE6hW24lhrDQqRDXIN+a0cxx5UotbcQSTWosUkROKMsOyRD7jaodulkyiiWChxEoqyKu6apzjqnnSMjMlKUWOB4fuINNmjVLp755/054cds/Gd0+rL9TTZe6/3Y8uXzySun2IsHbi0dVrNkW67RKnZ2sxFPyHpqHNfS457ZskoI2lpNCsM6scx5twXi+F2ytJuzlwa1Sq1WHW7RymkSXawlLpva01+UWesnlFnIsnNuboxe5ft0GpzqWsZDoyZtQZqFQyJS3VSlNKI0oylFilOY8xdsYo1y+1NqKVVqRaKx8aWxUJ6qjHyZbjZxHlIJJ4GReyL2JZj3hw1adV0TRO6eudGcd2cXHD7bPVdem/U1a++7eWNXHv4zPH7sXgADq4AAAAAAAAAAIveGo00eMpJ4GUxH2Fj6oyjVCQajxPAfF4v6Gj+OI+wsfVE/MW/AA94AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3akL3Wk+Ir4xsdLW+teoeIPcWY5pakL3Wk+Ir4xsdLW+teoeIPcWYlFq1OvWFG8HIAanXrCjeDkAUjWf1RHrPs787HxLg0RG93qiPWfZ352PiXBoiAAAyzZu5VF4dj6NV7APSpNVcnHAq0VwyWTCjLFt0iSWKUHgosVdkt0amm6uHh77M3VNPHrG7EwDJt5N1MWgyo9RsbJVMoMyoOUmNKfkoWt+S37dRElJESD3SPP4Ra7X3NW2sR0L06jxVdFzTp7fQ7+u4PkZlkngWbczDM3kvft+Pmesbs7PHrj8X0QYBlRnU52zelnSztFY5qqESD6WO19hE0zUhK0pJgzyzUZKLNhjjmHhhXFW2dpjVdqCqVTICpD8ZTtRmpjJS41kmpBmvAiUZKLJLdPPhuDWnT2rIznPBjkBn29m42nP3nVWi2Kqdk7Pw4iWibh1OttxVuKUay/JpdVlL9r2N8t8W+HcvNjXf2jpdQswt210KtMQY5oJxSiSosTySLMaTLE8rDczjnp1drT2pO73sn7jUmevC39MJANh6fcK2d09Tpz1Npki2TVoypjcpqYa0N5SIp60aiPJI0m4slEZYkZmR7gttpbjZj1lrF0mz9CYRX5bs5uqStdVrJE0aTy3FnilCEllGasxERGZ7gud8Tw/7Zq9pZlOWb1vZ74uGCgEsm3Z2lg2LVb5w4TlHKaqnk61IJZqdLDcIt1Ocs4hsibDiGkpUtlk1FiknHCTj4MRednd/v8Vcde35VgHk6cUn4UieXTyh04pPwpE8unlBHrAeTpxSfhSJ5dPKHTik/CkTy6eUB6wHk6cUn4UieXTyh04pPwpE8unlAesB5OnFJ+FInl08odOKT8KRPLp5QHrAeTpxSfhSJ5dPKHTik/CkTy6eUB6wHk6cUn4UieXTyh04pPwpE8unlAesB5OnFJ+FInl08odOKT8KRPLp5QHrAeTpxSfhSJ5dPKHTik/CkTy6eUB6wHk6cUn4UieXTyj5crNMSn8lPjurMySlCHUqMzM8CzEfxgPaA9qrLvJhlNQRnN3TLE8//DhufFjgLdHfRJZS83uKxL95Hgf8gF3s7ZK2VsXpjVk7NrqSYGt6+opbLJINZGaS/KKTj7U9wXvYavi4AL0nE9IMhalr+2tb/fg/ZdGQ4ts7TuXqOWKqFBiw6Z0sdmxpJSNddkZLraCVgRETZYLP2J4nuZwm9mnrvLcTtVr1sNXxcAF6TiekDYavi4AL0nE9IM12pvDtfFqFo6jZ/pQiiWMSSqm1JZW7Il4NJeWTS0rSls8hREWUlWcv3D11m2Nta1VWaZYFyjROh6VHqs1ypMOP4pfN0m20JQtGSZaw5iZ4+2TmLDPMzs9q8OP2xbn0htNXZvW8mPWz1YJ2Gr4uAC9JxPSBsNXxcAF6TiekGX5V6drrRIs+xYtNIp79Vpj9SecqbDjyCJs0EaEkhaDxPK3cTwF9s1eLVLYVeixaPBYRFepTFSqi1kazjqdbQtDJGRkRKMnMcT7CTzDWLns9c9/+m+nknamM9ctvPeerAew1fFwAXpOJ6QNhq+LgAvScT0g29ARWi8iNUKfOl0urQVRJsF9Ud9k3EryFlhiWUkzI93sGPgX68Ev/AFEtUf8AzZ7+SRYQH1Zj9Ff5h/jVC7C02Y/RX+Yf41QuwAACT3cWJXeFayLZdFTRT+iErWchTRuEgklifsSMsfpFkt2iXVNMzUYAZKrNz0ZNlZVqrF2sK0SIM9qnSoqICmH0OOKUlGSjKUasVJwLN2RFaxd7b6zzLUiv2HtBTGnlk225MpjzKVqPcSk1pIjM94hOvXF/Fi4wj4DIVkri7xrSWkplAqNkq/Rmqm4lCZkukPpbSkzIjXnSRGREeJ5xaH7qby2qq5RUXf2lcmNoJw2U0iRrmQe4vJyccndz7gWYx4k3ls5Y9+CKAL4dhbblVl0A7HVwqm23ry4R097X0t9ubeTlEnOWfDDOJXZu60pVlLX1S00SqU2p2ejsvMRnWzZMzWtJezQtOVhgrEsMOwJbjTdXhlZM6pp5249WOAF3l2QtZApqK1OsvV41PWlKky3YTqGVEe4ZLNOSZH2M4tAvPCcsgAAAAAAi14v6Gj+OI+wsfVE/MW/APm8X9DR/HEfYWPqifmLfgAe8BfLK2cTXn33JMg2YkNs3pCyLPkkR5i+M8BUeh2ZqKOhaAzUynrcJtlt1SXCcxMix9iksOzvi2YMo+Av/AFE1pa20RTjSycd1nKjPE6lCv+I0+1x+PeMe6HYOYiWbMw48ts2lqSuHNQaUqIyL2SsDLNnzbogiQDItPsBT49bpxSJkGVGkQyecYOYlTprNk1YklOBmnHOR7wjarHVR9als9DNa6tw2GHHiS64kjPDJQedWOGBYbphdrgR4BJ4l3doZsRiW0cNJSka4yhcgkuLLeJO6Z/EQoTrEV2CUY8hiR0S4bSehnSdyVkWJpVk7h5jzfEe8GN8GUfAXuVZGqxtawXFfJ18o+Uw8ThIcM8CJRl7Xc7It9TpsmkVB2mzCSTzCiSskniWOGO7+8B9U6ztq6rCZqMCz63Y76cttfRLKcovAasSHp6jLbcGl+dsc8TCgVR+l3f0U4aW1SZKW47Oue1JalGRGZFnMi3hWftRWqXGqceopiPzoSGXELZbUho0uKUksSNRnmNB9nskJnrrzXHNCeoy23BpfnbHPDqMttwaX52xzxOGrT1aOmXTppQ3qk0+2wybKTShw14n7U1GeZJGZ5+wJW3rmtp100mvAso0lgWPZwF4zKc8MOdRltuDS/O2OeHUZbbg0vztjnjMoAMNdRltuDS/O2OeHUZbbg0vztjnjMoAMNdRltuDS/O2OePO9Zq2DMpqGqzSzdeQtxCei2c6UGklHjlYf7yfpGbRbpxF0ziqwLEmHyx/e2AxL1KW34LK89j88fD1mrZx2XJDtmFkhpBrUfRrB4ERYnuLGcKRQpdaS90GaTWyRHkn2RZq2y7Hp1QZebU24iM8SkqLAyPIPsAMMMuk8y28RYE4klER9jEh9ijC/Mo/+Ej7JCsAzdqQvdaT4ivjGx0tb616h4g9xZjmlqQvdaT4ivjGx0tb616h4g9xZiUWrU69YUbwcgBqdesKN4OQBSNZ/VEes+zvzsfEuDREb3eqI9Z9nfnY+JcGiIAMy6nm1TVlGbXKl1bpcU2kGiMazySdeJRZJJ3zwMxhoS+k3v3o0GmsUei29rcKFFTkMx2Zi0obTjjgREeYs4XfTq098s9Zgm2rTq7rL6WX9MmWJfsna67Gz9marbikWbl2Zrbk6SmpuZCn23EmRaykvbGRkWVlZJER44nuHPGLybsqrba2sS0VoYblMiTU1yjyEvJyJEhsiIm0mZ58fiGqNRqM6rz5FUqkt2VMluqeffdVlLccUeKlKM90zM8R5hvXr1atXam3G/e9nf7dmXuZmmdns3qZuZ982Nr7DWjuwrLlOvEnVKw0StTKy9Mq/VC8tUxgikGbXQqEGREkmyRgpat0jPAyLPDb87ZWXr1kqVCotfhTHmrQ1CS42y6SjS0tLGSsy3jyVYH8RjAQDMuNWmzhp4T7y/puXFurnc+8s/ubj2pq9y1qbY1m0sO0FiZlWJ9hJPWilKOH0ORuGao6WvZKdI8jEjMiwPdHqql/libKybXTaXVqTVWqnLhsazHeIlLYNgm3Fs5zwycT3cdzD4xpcAzjE7PLh7zPrjfzqTbrrg27sbaW7CxNnOk8S8OlSo8i1jdYYy5CdeajOJiqwdLcJaDStKjLEsUH4CrV6+qwkmy8W7d+twXqVaaTOjVCbGdSb1PJZkTTx4nhkYqyjLspSeBjT4AumXa8P12dOnHppn3M3Oee2/jLqufXVU3rdh7O0ix71YZvJplRqbNRVD6VRE5RLaLD/AGhLhqIzSeJ4ewLc3RjarUXpo8w+mZrCmUKRgbOWR4nj2xC5AHPPXDqrb116LD1LO/CqfNf6w6lnfhVPmv8AWL8AqLD1LO/CqfNf6w6lnfhVPmv9YvwALD1LvfCqPNf6w6l3vhVHmv8AWL8ACw9S73wqjzX+sOpd74VR5r/WL8ACwdS73wqjzX+sOpd74VR5r/WL+ACwdS73wqjzX+sOpd/4VR5r/WL+ACwdS7/wojzX+sOpd/4UR5r/AFi/gAsHUvI+FG/Nv6w6l5Hwo35t/WL+ACP9S8j4Ub82/rHnnUOTAaRL6KKRrTratbQxgoyJRHmPKMSgfikpWWCkkfhAfeyFF+Bqp5FHOFtoJL6XJNaFIM1rPJUWBlieI9uste9p+gfSUpQWCSIi+IBnLUtlg9az+9B+y6LtUbW1lu/WO+i7G2jtPjU56kKqLdPbOKpxTzaydJeuY63gg8+GOOGYYlu8vJrV271UXS6VT5yKprBq6IfW2bZtkos2Sk8ccr6hM9sza7glRPPnvRhNtc1d3+k1Ttabp719tlTrQ0io2yshBslWqmi8JORFqcJgnIkA3I6Y59FKMyNBEaTUZpJfsTLsj3Vbp1dbW2ajCsZXbSM1SiQ6YrpIwTq4r0ZT5mpwlmkiQrolOBkZn7BebMWMU2zNruCVE8+e9GG2ZtdwSonnz3oxns/x7F4cPtiyekq2S6s3q5lz6yJ5AunsuV2tJpFubKM196jxjcJhDZqWazzmSCM04nubuAg1s7AVCNQKXU65Yyo2kZqKnJVQpNNj648xNdyltHgo0lrbBKNvEzI8MM3YHxtmbXcEqJ5896MNsza7glRPPnvRi652tV1d+Ovx5YmDTtJLvjPv1fVmywMGqU2xlHg1g1dFsxG0rSozNSM2ZJ4kWciwI826Qv4102zNruCVE8+e9GG2ZtdwSonnz3oxvVq7Wq6k0zsyRj68Iv8A1DtSf/N3v5JFgHsrNUlVys1KuzWmGn6lLclKaZWakIyiLMRmRGe5vDxjKvqzH6K/zD/GqF2Fpsx+iv8AMP8AGqF2ABlHU1vIj3s015wmzShp8zJz2p+wPMfxDFw/SM0nikzI/iGtOrs3Pmzr09uYbOsJol91lFWZoKIdkDpdaadrUOGnFqW0pxSCkII1YkaVKLEjzezPPmwOTUWxhWBs1XafZ2mT4TrVUpyokqvVAlMTFpkt4OJbQ0RoQZlukpZ4dgaektScclRljvGP03XT3XFH+8TTezw8M/bHxw4b+Exq76s3lw9bfvx48dvPO5MCK5BtVBtlaw5tlp0m0UFp2AqcT8OokRspJ9olNtqQlJYEeJqxMj3NwQ5iwlt2Lr6vY6DS5DVoOnjEqQzn1x+JkmSVJLDE0keVvDWY3HFe2cUeG+YkNlrbz7KG6uLR6LOW4aVEuowESVNmWOGQava7vY3iE0ySdnlt7XTf7fLfGxbd73/+U/GrzzM7tobT02HPbtHY6dRp1ZrZ0iiOKhQKiUWRJQ0Rk4SFKZcM8FKQoyySxJO6WGB+uh1inQKO/GrtCTSGaRCprb8V+qFLkoaTLaPB5RstElRJLcIjzFujUe01qq3a6tP1+tyzdmSD9kpPsSSXYSkuwRdghajWs8cVqPHdz7os16rveP74fg7OmWY5Y9sfDa+3jkalHbmvQbIyFU6vUg0t1eZaEjhvpOMZNkw0mJnWnEk5BuYZREWV2Rqee6Y/TcWZZJrUZb2I+RiacX7Sen+1ztj7/ifoAAGkAAAEWvF/Q0fxxH2Fj6on5i34B83i/oaP44j7Cx9UT8xb8ACbWKrUGCc6k1JSm49Ta1k3Sw/JnnwUeJlmxwF5pdBh2JqMGu1Ctwpjbq8GW4xGvLQfsTUeUacMMTPAsdzdEBQtbS0uNqNKkGSkmW6Rl2R7FVysLmpqSqlIOUkslLxrPKIsMMMfALbvLz/SScYyGVSKk5EKHWbNQ0yX0K1ynsOKIsnHA3DUssn23YI+yPS4qi0SSmRUX6azOlRHVG7CMyjupUZGXts+Ueb4t0Y4etLX5BJJ+sS1khRLTlOGeCi3DHln1GfVHzlVGW7JeMsDW4o1Hh4RLvOu7CzasgUqRSFVSjWjcr9NabYp6Yzsdx4yeStLJo3MMMDPDs9ke1y0NKmuR65Ek2cZchlgZTG1qkkaVGZG2SVkSuxgRmWcYpAW3PXn8n+mSGrQUpdTs3IXUWEpjsYPnlYE2e8e8KdlLUUmj01HRbzTijn4m2ZkZkg0ullYYlmzl9Ix2AS4z4/OS779cLP2n9emQ24J0lmpWdQxOkIylU1lZqSnH27hqX7EyLsFj4eyIbU4keFU3YkWema02oiS+ksCWWBZ8MT/AJjxD6QZEtJnuEZDOFzlPaXDkSLvaFKisLfcgG1K1lGdbhIUZmlPxn2Bc6FHXX51Tq9To8qJHlssxExprZIcMkKWo1GRGZZJ64WGfdIxEaFbmr0OkRaQ3T4DqYretktTyyNXx4ZI92yfWvgmnecOc0MTmmVwfswgkVBFJpBwo0Ns24zBIMteUaiy1F4UkpJf3uwPXYKC5GOa9Ho8qlQXFJ1qJJTkrJRISSlYFiWBmSj3ez2BZNk+tfBNO84c5obJ9a+Cad5w5zRZsXdkkBjbZPrXwTTvOHOaGyfWvgmnecOc0BkkBjbZPrXwTTvOHOaGyfWvgmnecOc0BkkW6f8ApGN/gP8A82xB9k+tfBNO84c5o8Uy3tbkz404qdTiOO061k6+5gZLNB4+17GR9YDL9mrRIs+ch04ynluJIkllYF+8xZLUVKTVo1RmyjLLXGezFuEWQeYhjzZBrnwXTfOXOYKcq3dckxno3S2mp15tTeV0Q4eGURlj7X4wEXhfmcf/AAUfZIVh8tNm0020aiUaEJSZluGZERD6AZu1IXutJ8RXxjY6Wt9a9Q8Qe4sxzS1IXutJ8RXxjY6Wt9a9Q8Qe4sxKLVqdesKN4OQA1OvWFG8HIApGs/qiPWfZ352PiXBoiN7vVEes+zvzsfEuDREAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB9WY/RX+Yf41QuwtNmP0V/mH+NULsAAAkdgGkPWnjocbbWWSo8HCI044dnHMLJlLcI4AyFUI7kmzUpysNRpjrc1pLfS9TKnG0GaiPE2sSLHMXsuyY8rdh6fLhtTVM1SkoOQ20vpgkiJSVGRZSTyUl2fjEm/t74+VuyDgJ63YaivVRinKRVopuLNJG8kjJ1JEXskKyCThnMt09weSHZWzyoVLVMkzeiamakpJCkklGGGfOk8Sz74TcuyGgJZULL0mz9P6Lrb0p1159xlhphSUYkjHFZmZHm3M2bdEVc1s3Fa0SiRieSSjxPDsYiZXD5AAFQAAAAAAEWvF/Q0fxxH2Fj6on5i34B83i/oaP44j7Cx9UT8xb8AD3gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdqQvdaT4ivjGx0tb616h4g9xZjmlqQvdaT4ivjGx0tb616h4g9xZiUWrU69YUbwcgBqdesKN4OQBSNZ/VEes+zvzsfEuDREb3eqI9Z9nfnY+JcGiIAAAAAAAAAAAAAAAAAAAAAAbm6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvtjbv7ZXgv1BFl0UokU3WieOZJW2Zm4SjLJJKFY+1PeEn2u17e9Znz970IDHYDIm12vb3rM+fvehDa7Xt71mfP3vQgMdgMibXa9vesz5+96ENrte3vWZ8/e9CAx2AyJtdr296zPn73oQ2u17e9Znz970IDHYCrOp9So9Un0SroYTMp0lUZ7WFmts1JwzpMyIzLPvEKQD6sx+iv8w/xqhdhabMfor/MP8aoXYAFzs7WU0Gqt1JUY5BIIyNsnMjHEt/A8PoFsAJcJZlLqXbiFQSdKj0NxPRDqVvnJlk6ZkRmeSnJbThnPdPHcB229PcYkRzoLzqJTyXnSfm5e4ZHgWDacCzZv/uIiAddeiplTrfxqOltmnUR0mEvKeUl6ZlqNRkksEqJBYF7HcwMW1Nq8kqSXQGPStSj/tf7THD4s258Yj4Bw3OWE2TXqXaeJIZtG0mOxHdckMLalJS8RrxMkZKknlljgWJYYbohjuta6vWSUTeJ5OUeJ4djHcHwAmN8xc7AAAqAAAAAAAi14v6Gj+OI+wsfVE/MW/APm8X9DR/HEfYWPqifmLfgAe8AAAAAAAAAAAAAAAAAF1pFjLWVqmx6rDbpqWZKMtBOSFkrD4yJBj2bHFtO1pPnLnMAR4BIdji2na0nzlzmBscW07Wk+cucwBHgEh2OLadrSfOXOYGxxbTtaT5y5zAEeASHY4tp2tJ85c5gbHFtO1pPnLnMAR4BIdji2na0nzlzmDyyLD2yYmsQdbpRuPtuOpM5K8kiQaSPH2H/ABl9YC0AL1sf237Wi+duejFOTYa2sWO7JW3RzSy2pxRJlOY4EWJ4fk/iAWkB8R3TeYbeMsDcQSsN7EsR9gM3akL3Wk+Ir4xsdLW+teoeIPcWY5pakL3Wk+Ir4xsdLW+teoeIPcWYlFq1OvWFG8HIAanXrCjeDkAUjWf1RHrPs787HxLg0RG93qiPWfZ352PiXBoiAAAAAAAAM43b2Osi5c3Ubb1C7Q7W1ZirJhttdFTG8lo0Y45Mdaez2TLsjBw2PuchVyv3GVOzlnKpXaRPerRPImw6PVJDRpS2RKRrsJhwiVnL2JnvfENf0au/b/umfbP2Sf8AqaM8M3Ppf28V4+p6gO2rkJsc7Cs5SoVLZqFSKpSHVNU9bhng0avyi1HmXmz5kH++G1/U920oVAm2mRNpdRp8RlmSh2G6tfRDDhpInGyNBHkka0keOB/EM7XjWyskVmXrt7b9PKAU6mstsWjqtCmR01GUwRoWZkpnXVkRPZWOt5soscDMiPwXcW/oFRtxZiw9mX3K3ZiiUJ2LWpZsrbZdSlBuGvBwkKJJOJThlJI9zMMzTntSXhnF8JNVue7hiZ5XK3VJi6u6Z8/4zbvtzb57MIz7h7V06ycq10ipUrWIdOiVN+OTi9eQ3IURNpMsjDKwNKjLHcUQm93ep/o8izVeqNt6rR23XLPdNqY6uRJSUTFL5E44Tac5EpolGWCsxbh7g9Kb1bE2jkXmWcr1oW6PEtC80xSpi47zrCI8dSEtJMmkLWRa2yn/AHT3RdpN6V1CVOWTiWzJVNmWPOhqqa4MnIZk5MkiNSda1w04uozpQeY98W2XTqunnNvDOnVceecT8JJZiauMu/jjVonpi6r5cWEKvdu/S7Ju2xYtTQp8NE5UFLcaQvXnDLD8olCkpPIPHMZ4H8Qg0ypQYCkIlvk2pwjNJYGeJF4BParQrtINi3JUC2ztRtQ3UFMlGZjPIiuRSwwdSpxpJkZ58xmR/EMfVKjRao4089IfaW0k0lreTgZGePZIZ/qs8vxOvbk1yn3/ADevfm91CjsWjdW4WQ7BZXra8ovbLwI8DI90sFF+8fFcRHs5IbJw0tw3zNLWSXtVEWJlgW4Q8NDqarNFMgpgzJSFyNcQ4k285ZCSz4mXZI+wPiuz12negx1QpcVtpxSluKNvEsU4FhgZ9kVH11Q0fu0v4FcgdUNH7tL+BXIKHUtE+EZn0I5A6lonwjM+hHIAr9UNH7tL+BXIHVDR+7S/gVyDz9S0X4RmfQjkDqWi/CMz6EcgD0dUNH7tL+BXIHVDR+7S/gVyDz9S0X4RmfQjkDqWi/CMz6EcgD0dUNH7tL+BXIHVDR+7S/gVyDz9S0b4Rl/QjkDqWjfCMv6EcgD0dUNH7tL+BXIHVDR+7S/gVyDz9S0b4Rl/QjkDqWjfCMv6EcgD0dUNH7tL+BXIHVDR+7S/gVyDzdS0f4Sl/QjkDqWj/CUv6EcgD09UNH7tL+BXIHVDR+7S/gVyDzdS0f4RlfQjkDqWj/CMr6EcgD09UNH7tL+BXIHVDR+7S/gVyDy9SzHwjK+hHIHUsz8IyvoRyAPV1Q0fu0v4Fcg9seQzKZTIjrJba86VF2RZzsqyeJdMZOB/EjkF1gQ0QIjcNtalJbIyI1bp58QGd9S1/bWt/vwfsuitJtNee5RJt60W3OtUmLVHmukBwYxtdDNyFMZ3dbN3LPAlGWXumZY4ClqWywetZ/eg/ZdFa2N1CbX2gk0+m3cVakMvTyfk1Z+u5MJ9BLylKajMyVGSlngeC2SLA1GeB4DO91THW8+3Wy7dnfra/dlur2pp9FsjKtlLQ6uFEgKqDiW04rNskZZkRY5zw+MRikXx02qzU01yy9dgypcVUumNym2UnUkJSZq1nBwyxLMRkvJzqLsZx7r1WUQ7prTx4zRmhiiSUNoI+wloyIix8AiNmKHae21pbH2trNlZdn4Flqe6003NkxnHJa320FloKO44RJLW0e3NJ59w+x0smrVZOG/41Y++ZOuGM3TomeP729t979/O63NXiWltrRo52gslW4zhpUo6jJbjIYdMjzEkmnDPH/8AaQyWIDdizaaz0U7H1ex86NHgqXrVUOTFXHkJxzZKUum6R/3kJE+Etlks7mv6r50AAEGmV4PuiWq+d3v5JFhF/vCL/wBQ7Un/AM3e/kkWAB9WY/RX+Yf41QuwtNmP0V/mH+NULsAD2Uqly6xNRBhpI3F4nio8CSRbpn8Q8Yu1mHauxVm3aIyT0lJGetnh7NPZLA93wFnFnFK9rNin5byGKfWadMWtw2zJpS8UmRGeJkaSzexPcxFGFZWQ5OTEnuHH/wBqRHNJtrJSiNRJykmacMM/ZMTajxIrT0asz6GdAqPRWtoQeW2T5LSsjwSszPNm3MCHzT2aw0qX03blpNVXYNnoglZ0a8nA05XY8AumZ1SXrh8mrhcdcfhAa/Rzo9TkQ2ddcZZUlJOqTumaSPDHc7I8qadUFrU2iBIUpHtkk0ozLw5hkO0cCZVYE+JTYzkl5upktaG05RpSbLOCj3izHnPNmMXmq9Hu1WbBTAqGsLeQfRVPyTcQoiP2+fEk+EsBz0W3TM+H4l/bWvE1beP5wxHEhpkSyiyJTUPdynHyUSUmXYPAjP4twXuXYw4cRmY7aGlmiQk1MEk3TNzDsEWRu45s4t1pGVx65NaclokqS8vF1OGCjyjz5iIvoE5pXQGRZgqgZEg475Ixyfb+yycMrNjjhhj2Rqfy05nXFNX8dWEKotBcqFaiUyYl5huS6lvXMgyzGZFiWPhHjmU96PIdbbadU026ptK8g8DMj398ZSg9DRajGiuwKyTjlSQ4h2oa0Re3TjreB4mnN2CMh+IOFKtBEmMLSVGbNbZNYpLWpOP+/jmxMtwz3jE44667jv67/wDbFZwJyVpQqE+Sl4kkjbPE8N3DMKxUmQUJ2a8rWSbMiJC0LJS8T3SPDD6TIZPopNRJ8SI5BrqHVSVrQ7VCbIywZdxJGB4mR4liZEZZi+IRh+XJl2dtCcl5bmRKQlJGeZJZZZiLsBduvJZx68fhCQABURa8X9DR/HEfYWPqifmLfgHzeL+ho/jiPsLH1RPzFvwAJjY6gRKw9KmVM1FCp7RvPEk8DUWB4JLwnh9IqqVZ2vJ6W0aziolQddJEdTb7i0qLEs6stZ4Zsdwh+WJrcOmyJVOqSXTiVJvWF62g1KSZkeBkRZ90y3CMXmFT6JYOpRqpPqxuvmslNsttKJSGjPAzWhxBGR4GZlju4DVxmd3769kl2vf+ljjWHqM809K5sOag3SZWtpSsGzPcNWUkjwPPuY7hj202xmTMcbORSqmjWVmeD7yCbNJkRmeBErEvoF0ZrrDjiaei2Bu6++k0dL6drZlhjgai1klGefMSceyLpKqVLs6tDNfltKqbkZzKfbiqbxSrOlKkEhJkrc3UluDNuJnrg1Jm464vDTrJ0KNaKl5EinPNvQEuuRFktw1rNgzNeC05OGOcs/7hGnbGzHJZNdFw2H5S1nHirNRLWWJ5OGBYFjhgWJiRUKXTJ1ZpVZjT1OOQ6cmPIitxH3HEKS0aMfYoNOGOHZ7IqzLYwpL0aY1aFmnuRcUOsLp+U9ilRnihRtKIj3N1RYHvC6uO3j+b/hJw+0R+LdzVJTER3plT2nJreuMMrWslq+L2uGP7xQfsHVEJjrhy4k0n3TYM2FqPW1kRmZKyiLePcx3BfGrV0Q6jZ+S7PPJhMZMhRtL9gr9xZ/3D4stbGk0OA2h58zc6Ny1JJo1GTZpcLKzlhuqTm+MXEtvXPH4S+HW1R16yclCEvR6hDktdEFHccaUrJaUZ4FlYkWbNuliLdUqeul1B2nuPtPKZUSTW0rKQebHMYldXrcGTHVT3LUNyYsmQk1JiwSayGsrdXi0kzURdrjnEWqbVOZqbrNJkrkREqImnVpMlKLAt0jIuz8Qx1+Gk1o1QlwbvaG3AeJqRMJuM24aSVrZqUZZWBkZHh8ZC82dlVNqpz6HVakueuM21IQ+tpDajSs1pycEERZtbx3OyLNRqfLnXf0JyCyTz8PWpKG8okmvJUZ5JGZkWJ/GZEL1QItRdq1QrlRpzsE5LTMdtl1xta8lBuKysUKUWB64XZ7B5gnPru/yl4dff2VqvaZqkzUU9FMmzZC2lPEiOlJ+xIyI/bKLfFpqdtHzOjSqLT5kpiY+tDqGkN5SsklkbfslFgolJ7G9uj7rMydDteyqBSH57iqe4nJacbTk+zRnPXFJLDwZxRj2eqtKpFLebhnLlwpjst2O04glK1xS8UkajJOJEvfwzHuhOEvj+7F754X8fKVwpDkuMiQ7EejKWWdp3DLTn7OBmX1iuKMN56RHQ9IhuRXFbrTikqUnP2TSZl9BisNXizOAAAIoLfO/SUX/Af/m2LgLbPWgqnFQaiJRx3zIsc5kRt4/zIBeKHQHa6l9Md1KXWiI0krcMWS0EWRBgVCNKaU24iM8RpP8AuGL1QLQroKZC2GyW66REnK3C+sWS0M2TUIVQlS3jccXGeMzP+4YDCkL8yj/4SPskKwpQywhx/wDBR9khVAZu1IXutJ8RXxjY6Wt9a9Q8Qe4sxzS1IXutJ8RXxjY6Wt9a9Q8Qe4sxKLVqdesKN4OQA1OvWFG8HIApGs/qiPWfZ352PiXBoiN7vVEes+zvzsfEuDREAAAAAAAAeuLV6tBa1mFVJcdszyshp9SE47+BGPIAD0zKlUahkdHz5EnW8cjXnVLycd3DE824X0CmxKkxTUqNIdZNRZKjbWacS3jwFIAAAAAAAAMC3iDAt4gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIrF3iWuu8eqDlmE0ZxFTJk3inx3XDSbZKIsk0OIzeyPdxEp2x963ctkfMZXpxjQAGSXNUXek6hTTsKx60LLBSVQJJkZbxlr4/U6o29RKSSmJZAiIsCIoEnAv/AK4xqADJe2PvW7lsj5jK9OG2PvW7lsj5jK9OMaAAyXtj71u5bI+YyvThtj71u5bI+YyvTjGgAPRUqlPrVTnVuqqjdGVGUuU8UZCkNJUrDMklGZkWbsmY84AA+rMfor/MP8aoXYWmzH6K/wAw/wAaoXYAH0hxbaiW2tSVFuGk8DHyACquVKdMjckurNJ4kalmeBj9VLlrwy5TqsNzFZmKIAKqZUpBqUiS6k1e2MlmWPhH6U2YkzMpbxGrdMnDziiAD9MzUZmozMz3TMfRuumSSNxfsPa5zzeAfAAKqpcpRpUqS6Zp9qZrPN4B8k+8RGknlkRniZZR7u+PgAFZUuWtRKVKdM07hms8SFPXXMlSdcVgo8VFjmPwj5AAAAARa8X9DR/HEfYWPqifmLfgHzeL+ho/jiPsLH1RPzFvwALgRmRkZGZGWcjIfrjrjqst1xS1b6jxMfIAP1KlIUSkKNJluGR4GQ+nHXXlZbrilq31HiY+AAfbbrrJmpp1aDPMZpUZD5MzMzMzxMx+AAAAAA+kGRLSZ7hGQ+QAXqj21tPRKZHpUQ6StmMjIQpyO6ajL4zJZF9Q9myTa/taL5s96QRkAEl2R7W5WXrdEysMMehnccPKD92SbX9rRfNnvSCMgAk2yTa/taL5s96QNkm1/a0XzZ70gjIAJNsk2v7Wi+bPekDZJtf2tF82e9IIyACTbJNr+1ovmz3pB45VuLWSZsecfSYlx23Gkl0O7kmSzQZ4/lP+AvrFlABfOry2Ha0LzZ70gpyLbWukx3YyyoiUvIU2o0xnsSIywPD8p8Ys4APltvWmm2srKyEJTjv4FgPoAAZu1IXutJ8RXxjY6Wt9a9Q8Qe4sxzS1IXutJ8RXxjY6Wt9a9Q8Qe4sxKLVqdesKN4OQA1OvWFG8HIApGs/qiPWfZ352PiXBoiN7vVEes+zvzsfEuDREAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB9WY/RX+Yf41QuwtNmP0V/mH+NULsACQ2DisTLSx2JEZp9BpUetuoJaTPDNiR5hHheLK1aJRK01UJqHVMoJRKJoiNWcuwRmRfWLp4s6uCQdLLTzqg1DXApcJs38pL7EWMhaCRirHFssrcSY9lRiJtNE1lNonnkx5rUdwjgttEa1KJOXik8Vbu6ecWqj1CzFPrTU+lO1N19a1pU3JbZabNCyMlez1zMeB5scPCLy/Ms5ZyApcd9xbj09qSbRPMOqyUrJRkWtOKLcLsmQmnl2uH+Z+mrxuOuK2SLEUCOzMkKtE+bdPWlEgyiljiosSyfZZ/34ZxRl2CKG5IeXNechNJQptxpjKcWascCycc3tT7O8KEy1ECRBrEVDMgl1F5pxozSnBJJLA8rP/LEXRy3tNkJXDcVU48dxltOuR8EuoWk1ZywWRGR5XZPsCac3Tm8dvxutxLtw3/OyM2hoK6G8xg4pxmS0TrSloyFYGRHgZdg85C0i61+pxqlIbOIuY420nJJyU4anF7mcyNRkW52DFqCFAABUAAAAAABFrxf0NH8cR9hY+qJ+Yt+AfN4v6Gj+OI+wsfVE/MW/AA94AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3akL3Wk+Ir4xsdLW+teoeIPcWY5pakL3Wk+Ir4xsdLW+teoeIPcWYlFq1OvWFG8HIAanXrCjeDkAUjWf1RHrPs787HxLg0RG93qiPWfZ352PiXBoiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+rMfor/ADD/ABqhdhabMfor/MP8aoXYAAB7aVSpVYknEh5BuEg1kSlYYkXYLfMB4gHuao812nyamSUpYiKShZrPAzUo8CIt88x/QY+aVSpVYldBw8jXMhTnsjwLBJGZ/UQDxgP1STQo0nupPAxcyomNnjr3RO5IJjWsj4sccrH/AOwcsnPC1gAAAAAAAAAAAAIteIw7Jo0Zhl0m1rmIJKzLHJPIXnFahWAtU/T23G7Wx0EZbhxv+w/LdqSinQ1KMiIpqDxP+4sTCy9SiLpaciS0rWk+zwV7XwgLBsdWt4YxvNv+wbHVreGMbzb/ALCZNVinvpWtmaytKCxUaVkZEXxj4KuUw0qUVQj4I9seuFmEyIhsdWt4YxvNv+wbHVreGMbzb/sJyiQl1BONrJSVFiRkeYx9a6f/AIYZEE2OrW8MY3m3/YNjq1vDGN5t/wBhO9dP/wAMNdP/AMMMjFb8Ot0G1DdEqVWRNS5F6IxQ2SSzmZEW5j2BcTRKkTIUCGppLkx/WSU6RmlPsFKxzZ/90fNrlZV4cY/+Wp+0oeiEeTXqKrem/wD+TgoufUZX/hWmeRc5Q6jK/wDCtM8i5yiVa6f/AIYa6f8A4YmRFeoyv/CtM8i5yh1GV/4VpnkXOUSrXT/8MNdP/wAMMiK9Rlf+FaZ5FzlDqMr/AMK0zyLnKJY0annENJW2k1qJJKWvJSWPZM+wXxiV21u8qFhKJT65Vn6c03UEE4SkWhbma8RqNJKaaSw2aE5sDxUv2RHn7BLcTtXyJvezPNijqMr/AMK0zyLnKHUZX/hWmeRc5RNLLQZVtqxHoFmnokidKWTbSVv5CMo99WB4fQLZJq9PhvLYkVCMlaFGhWDpGWJbpfWGcE3zZyR7qMr/AMK0zyLnKHUZX/hWmeRc5Rk+iWOXXLDVi3TFaabZpDzLRxuhzWb+uY4GTmWWThh2p4/EI1rp/wDhhbi9m8fnc4zKK9Rlf+FaZ5FzlDqMr/wrTPIucolWun/4Ya6f/hhkRXqMr/wrTPIucopyLI19iO7I6ZU1WtNqcw1pwsckjPDd+IS7XT/8MUZzv+wS/F3ez/wGGRAYzpvxmnlERG4hKzIvjLEVBQgZoMb/AAUfZIVxRm7Uhe60nxFfGNjpa31r1DxB7izHNLUhe60nxFfGNjpa31r1DxB7izEotWp16wo3g5ADU69YUbwcgCkaz+qI9Z9nfnY+JcGiI3u9UR6z7O/Ox8S4NEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH1Zj9Ff5h/jVC7C02Y/RX+Yf41QuwAPRT5LsOcxKYUaVtrIyMjwHnH6RmR4kLLi5SzMwynXkTZ1ZhU2kzF0ptuKqouuRjNKzUpJGrAk4Yn7I/pMe2C862mlvJqU6Q+tMlon5KTbeX7BeSR+yMzz4YZ94YoKp1In0SSqEknm05KXCdVlJLDDAjxxIsB+uVerPLQ49VJa1tnlIUp9Rmk98jxzCcsdc166++6c0Vq0hk3V6naitNJclm2lhtTjprNJl7cjWREnORZ+wJG41TYq6m0ptptZVDCIk0ETZO5GbEux2Rifp/XcVH06n4rzK/2lefw5xQdqNQfx16dIcylZZ5TqjxVv5z3fjDw65fB49c/lVrJVEqnI6bGs5WuK1w1mZnjjnzmPEKj8mRKc12U+48s82U4o1H9JimJJiYW3NyAACoAAAAAACjjhXrOmZEeFVazGWJe0WNi7Jt2jvDu6ahtVXWanDtF0PTZLjykdCNk2szShWc0JIiPBKcCxwGq9uH3o0CFIjuracROQaVoUaVJPIXuGQlVmLRVqNSW2WKxNbQayfNKJCiI3O3wI/bfHuiYmc3w/Mv6vqZs4dbWfv2bq2Xp0xNBQ1aO1VXtXUaRaVplM+rw1JWwsnGUrQy444tamyPKIlexxxVm341WLybXFd1bGuFVnynQK6qPCkk6vXIjZuNpNLKscWyMjPMky3TGuT94VuJWBSrZ117JNKi1yovKwMjxI86uwZFgLeq0NYXFehLq01UeQ5rrzJvqNDi8SPKUnHAzxIs57wTPvP7M+vZvqunEuev6//wBT0ZO1RTMeJedNVHjtsnJbS+4SEkkjWpSsTwLwDGWvClPrNRqsg5dUqEmY+ZZJuyHVOLw3sVGZjza+M6NPZmC3PF7teDXh4dfDXxrCIhaVeXeAwf8Ay4i/+ZQ9LJ5NYpCt6aXFODwVteuW8ZPegEX1qHsUrIqFLXvTS4pwUTfXg14eHXw18TA92vBrw8Ovhr4YHvJ0zMiIjMzzERZzMbRwCnxrRXYvMw39dbs3U1IJTKsMvWphpI827uZhqe3LW04l1pxSFoMlJUk8DIy3DIxNLL3yWzoFbjVefXqtV0RWn22o8mpOmhCnGFtEtOJngacvEsC7A1n+F0/f/p1T+5JMa+1e6z1sv6Z+ujtZaaqxqXVLZVSeU/qh6Hp7011wnzZUSCcbSazytb+Lc3RD6K9epPVUbUV69i29Gix6i3TUMxjlS5L7mSaySbZutkTZEZ4KyjLEzIYRqVtLUVeY1Pqdo6pKfjqymHH5jji2s+PsVKVin9w9eyXeBrinerq0OWpJIUrpm9iaSxwIzytzOf0mJL/KasdbfF9fW8rp7/8Ay+Z6emyl7kaNEsxeKcZhLeuvU15zBkmjUtRLxUaSxIjPwn4RqxrwqS7W2jntvtTrQ1KQiVk6+l2WtZO5PtcojP2WHYx3BbdfGJpxqt8vaSLbmSPdrwa8PDr4a+NYR7teFGc9/sErxd37Bjz6+KE98ugJX+C59kwEbg/mMb/BR9khWFKH+ZRv8Fv7JCqKM3akL3Wk+Ir4xsdLW+teoeIPcWY5pakL3Wk+Ir4xsdLW+teoeIPcWYlFq1OvWFG8HIAanXrCjeDkAUjWf1RHrPs787HxLg0RG93qiPWfZ352PiXBoiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+rMfor/ADD/ABqhdhabMfor/MP8aoXYAABfLG0+FVK8zEqEcnmVJUakGpSccC30mR/WLJlLcLGAl9KptItS5NpUajNQJrDanY7kd11SV5KiI0qS4pW6R7pGWcemTZCGww9AQqA5VGIuvLZJD2URYZRmStdyTURdjJw+ITllrG+EHATA7AxyW1EKvpOc/HN9qP0PukWJYGrKzYmW8KUezzLcul01xiG8qoNm7ry0ukacccxklwiPDDsYbouLw65/FZlzM9dbooAlcmxMaDERIqFdbjOPk4bCFM+xXkljga8rAjPsEIqosFGRHjh2RnLWH4AAKgAAAAAAIneW3r1BZaJakZUtJZSd0vYLFppFmnFw0GVbnpzbhOC83i/oaP44j7Cx9UT8xb8ADw9S7nw7UPKB1LufDtQ8oL6ACxdS7nw7UPKB1LufDtQ8oL6ACxdS7nw7UPKB1LufDtQ8oL6AC0U+zqIM4p6p8iQ4SDR+VPHMfxi5Sokea2lqShRkhZOJNK1IMlERljiRke4ZiqADxdJoG/K87d5wdJoG/K87d5w9oAPF0mgb8rzt3nB0mgb8rzt3nD2gA8XSaBvyvO3ecHSaBvyvO3ecPaADxdJoG/K87d5wdJoG/K87d5w9oAPF0mgb8rzt3nB0mgb8rzt3nD2gA8XSaBvyvO3ecHSaBvyvO3ecPaADxdJoG/K87d5w/DotPURpUUkyPMZHLd5w9wAPxKUoQltCcEoSSUljuERYEP0AAZu1IXutJ8RXxjY6Wt9a9Q8Qe4sxzS1IXutJ8RXxjY6Wt9a9Q8Qe4sxKLVqdesKN4OQA1OvWFG8HIApGs/qiPWfZ352PiXBoiN7/AFRHrPs787HxLg0QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfVmP0V/mH+NULsI5T3avTI6ozcSG6jXXHCUqQpJmSlGrcyD398eeVbCqxXTaVQ21mXZRIPD60gJWLzZKqQ6NW2Z043CZSSkqNtOUrOW9iQxr1c1Pg+Xl/6Q6uanwfLy/9IsuEsyzBBr9Bs04/UKI9KmTnzySU8yTSG0GojVmJR4mZFh+8ep61dnkzZNoYpSyqEiMbOsGgtbSs0ZJqysc+/hgMK9XNT4Pl5f8ApDq5qfB8vL/0iNZZl6r6WdpIVXUT+ssRCZX7AscrKUeYsdz2RD7p9pbNmul1CouzESqc0bRttskpK93A8rEsN082Awv1c1Pg+Xl/6Q6uanwfLy/9Ivav7/PyzJJ+OvRnqmVGExRptXbmzShKS5rsR0k62+tR5KcDxxIyNWVhh2N0Y5dUlbq1oRkpUozJO8W8IX1c1Pg+Xl/6Q6uanwfLy/8ASM4mctZ2wmICHdXNT4Pl5f8ApDq5qfB8vL/0iomICHdXNT4Pl5f+kOrmp8Hy8v8A0gJiAh3VzU+D5eX/AKQ6uanwfLy/9ID0Xi/oaP44j7Cx9UT8xb8AsVoK7UbQRGoaqRrBIeJ3KJ3KxwIywwwLfF+o6Ftw0JWnA8AHuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABm7Uhe60nxFfGNjpa31r1DxB7izHNLUhe60nxFfGNjpa2R9S9Q8Qe4sxKLVqdesKN4OQB+6nXrCjeDkAUjWr1RZBosdZvHs1Y+JcGho68303JWQvehxIVsYkqTHgOm+y2y+possywxM05zzGfZwz+AYVf1FVzbazJuzc0y+OoP8AOAc8AHQnaX3P8GZekH+cPzaX3QcGZekH+cA57gOhG0vug4My9IP84NpfdBwZl6Qf5wDnuA6EbS+6DgzL0g/zg2l90HBmXpB/nAOe4DoRtL7oODMvSD/ODaX3QcGZekH+cA57gOhG0vug4My9IP8AODaX3QcGZekH+cA57gOhG0vug4My9IP84NpfdBwZl6Qf5wDnuA6EbS+6DgzL0g/zg2l90HBmXpB/nAOe4DoRtL7oODMvSD/ODaX3QcGZekH+cA57gOhG0vug4My9IP8AODaX3QcGZekH+cA57gOhG0vug4My9IP84NpfdBwZl6Qf5wDnuA6EbS+6DgzL0g/zg2l90HBmXpB/nAOe4DoRtL7oODMvSD/ODaX3QcGZekH+cA57gOhG0vug4My9IP8AODaX3QcGZekH+cA57gOhG0vug4My9IP84NpfdBwZl6Qf5wDnuA6EbS+6DgzL0g/zg2l90HBmXpB/nAOe4DoRtL7oODMvSD/ODaX3QcGZekH+cA57gOhG0vug4My9IP8AODaX3QcGZekH+cA57gOhG0vug4My9IP84NpfdBwZl6Qf5wDnuA6EbS+6DgzL0g/zg2l90HBmXpB/nAOe4DoRtL7oODMvSD/ODaX3QcGZekH+cA57gOhG0vug4My9IP8AODaX3QcGZekH+cA57imuO0s8VIIz8A6GbS+6DgzL0g/zg2l90HBmXpB/nAOePQjHvafoDoRj3tP0DodtL7oODMvSD/ODaX3QcGZekH+cA549CMe9p+gOhGPe0/QOh20vug4My9IP84NpfdBwZl6Qf5wDnj0Ix72n6A6EY97T9A6HbS+6DgzL0g/zg2l90HBmXpB/nAOePQjHvafoDoRj3tP0DodtL7oODMvSD/ODaX3QcGZekH+cA549CMe9p+gOhGPe0/QOh20vug4My9IP84NpfdBwZl6Qf5wDnj0Ix72n6A6EY97T9A6HbS+6DgzL0g/zg2l90HBmXpB/nAOePQjHvafoDoRj3tP0DodtL7oODMvSD/ODaX3QcGZekH+cA549CMe9p+gVUpJJYEWA6E7S+6DgzL0g/wA4NpfdBwZl6Qf5wDnuA6EbS+6DgzL0g/zg2l90HBmXpB/nAOe4DoRtL7oODMvSD/ODaX3QcGZekH+cA57gOhG0vug4My9IP84NpfdBwZl6Qf5wDnuA6EbS+6DgzL0g/wA4NpfdBwZl6Qf5wDnuA6EbS+6DgzL0g/zg2l90HBmXpB/nAOe4DoRtL7oODMvSD/ODaX3QcGZekH+cA57gOhG0vug4My9IP84NpfdBwZl6Qf5wDnuA6EbS+6DgzL0g/wA4NpfdBwZl6Qf5wDnuA6EbS+6DgzL0g/zg2l90HBmXpB/nAOe4DoRtL7oODMvSD/ODaX3QcGZekH+cA57gOhG0vug4My9IP84NpfdBwZl6Qf5wDnuA6EbS+6DgzL0g/wA4fadRbc8e7ZqZpB/nANY9R+WN7qC34S+MbHTFLZlZio49wP8AFmMKXf6l27uwNebtDZqkzIsxCcjKOW44k04kZkZLMy3SL4xnuRENmzFSIyPNAf4swEX1OfWFF8HIA/dToWFgY3g5AAei9C9BuwZoSdnyn5ajT+da1h/8ihjZeqUYNR42DTpL8IAER87ZKPwELSX4QbZKPwELSX4QAKmTbJR+AhaS/CDbJR+AhaS/CAAMm2Sj8BC0l+EG2Sj8BC0l+EAAZNslH4CFpL8INslH4CFpL8IAAybZKPwELSX4QbZKPwELSX4QABk2yUfgIWkvwg2yUfgIWkvwgADJtko/AQtJfhBtko/AQtJfhAAGTbJR+AhaS/CDbJR+AhaS/CAAMm2Sj8BC0l+EG2Sj8BC0l+EAAZNslH4CFpL8INslH4CFpL8IAAybZKPwELSX4QbZKPwELSX4QABk2yUfgIWkvwg2yUfgIWkvwgADJtko/AQtJfhBtko/AQtJfhAAGTbJR+AhaS/CDbJR+AhaS/CAAMm2Sj8BC0l+EG2Sj8BC0l+EAAZNslH4CFpL8INslH4CFpL8IAAybZKPwELSX4QbZKPwELSX4QABk2yUfgIWkvwg2yUfgIWkvwgADJtko/AQtJfhBtko/AQtJfhAAGTbJR+AhaS/CDbJR+AhaS/CAAMm2Sj8BC0l+EG2Sj8BC0l+EAAZNslH4CFpL8INslH4CFpL8IAAybZKPwELSX4QbZKPwELSX4QABk2yUfgIWkvwg2yUfgIWkvwgADJtko/AQtJfhBtko/AQtJfhAAGTbJR+AhaS/CDbJR+AhaS/CAAMm2Sj8BC0l+EG2Sj8BC0l+EAAZNslH4CFpL8INslH4CFpL8IAAybZKPwELSX4QbZKPwELSX4QABk2yUfgIWkvwg2yUfgIWkvwgADJtko/AQtJfhBtko/AQtJfhAAGTbJR+AhaS/CDbJR+AhaS/CAAMm2Sj8BC0l+EG2Sj8BC0l+EAAZNslH4CFpL8INslH4CFpL8IAAybZKPwELSX4QbZKPwELSX4QABk2yUfgIWkvwg2yUfgIWkvwgADJtko/AQtJfhBtko/AQtJfhAAGTbJR+AhaS/CDbJR+AhaS/CAAMm2Sj8BC0l+EG2Sj8BC0l+EAAZNslH4CFpL8INslH4CFpL8IAAybZKPwELSX4QbZKPwELSX4QABk2yUfgIWkvwh+lqk45f/AJDTpL8IAAyrNapdlB4lYNOkvwhWnapsplMl09Nhib6JYcZy+mWOTlJMscNaz7oACxPtT3HJmwsZGVlYFu4AAAr/2Q==" width="602px" alt="what is implied volatility options"/>

We also provide fundamental stock analysis, technical analysis and develop a full suite of trading tools and resources to improve your trading via our superior idea generation platform. Implied volatility is readily calculated by plugging existing options prices into the Black-Scholes model. Many option traders don’t understand who might be buying or selling the options on the other end oftheir transaction. Some beginning option traders think that any time youbuy or sell options, you eventually have to trade theunderlying stock. Implied volatility is expressed as a percentage of the stock price, indicating a one standard deviation move over the course of a year.

Educational Webinars and Events

  1. The other reason why it’s almost impossible to define a “good” implied volatility rate is that volatility changes.
  2. Looking at the data, we can see how the IV Rank and IV Percentile skyrocketed on October 30th, the day when the stock dropped by 35%.
  3. Tasty Software Solutions, LLC is a separate but affiliate company of tastylive, Inc.
  4. Such strategies include covered calls, naked puts, short straddles, and credit spreads.

The options Greek vega measures the effect of changes in IV on an option’s price. Vega is the amount an options price changes for every 1% change in IV in the underlying security. The three main factors affecting an option’s price are intrinsic value, time until expiration, top 4 similar websites like finotrade com and alternatives and volatility of the underlying security. Volatility is expressed annually and adjusted based on the terms of an options contract for daily, weekly, monthly, or quarterly expiration. The IV percentile describes the percentage of days in the past year when implied volatility was below the current level. An IV percentile of 60 means that 60% of the time IV was below the current level over the past year.

For example, imagine stock XYZ is trading at $50, and the implied volatility of an option contract is 20%. This implies there’s a consensus in the marketplace that a one standard deviation move over the next 12months will be plus or minus $10 (since20% of the $50 stock price equals $10). However, it’s crucial to understand that even in low IV environments, there’s still a 16% chance that the stock price could move beyond the implied range over the course of a year. It’s important to note that assets with low implied volatility and a high probability of profitability don’t guarantee a successful trade.

How to calculate option volatility?

The concept of ‘high’ implied volatility (IV) is relative and depends on both the specific product and the trader’s perspective. Implied volatility in stocks is the perceived price movement derived from the options market of that particular stock. Implied volatility is presented on a one standard deviation, annual basis. If XYZ stock is trading at $100 per share with an IV% of 20%, the market perceives that the stock will be between $ per share over the course of a year. It’s important to note that implied volatility is not directly observable in the market.

How to calculate

Generally speaking, implied volatility will decline after an expected news release is incorporated into the underlying asset’s market price. Ultimately, implied volatility typically reverts to the mean for the underlying asset. That means the market is pricing in a 68% chance the asset will move less than or equal to the amount calculated by its implied volatility. For example, if a $100 stock has an implied volatility of 15%, the market says there’s a 68% chance the price will be between $85 and $115 a year from now. In order to be a successful option trader, you don’t just need to be good at picking the direction a stock will move (or won’t move), you also need to be good at predicting the timing of the move. Then, once you have made your forecasts, understanding implied volatility can help take the guesswork out of the potential price range on the stock.

These days you never have to calculate out the Black Scholes formula manually. Implied Volatility is the market’s estimate of how far and fast the stock will move, and is completely subjective. In 1973, Fischer Black and Myron Scholes composed a paper that gave their interpretation on how to price the premium of a stock option.

It also gives us an idea of how the market is perceiving the stock price to move over the course of a year. You should now have a basic understanding of the role options implied volatility has in your strategy. Whether you’re buying or selling contracts, trading calls or puts, it will influence your risk/reward ratio. Before we wrap things up, we want to leave you with a few tips for using options implied volatility to your advantage.

what is implied volatility options

Gordon is an author (Invest to Win), consultant, trader and trading coach. He has been an active investor and has provided education to individual traders and investors for over 20 years. He was the CMT association’s Managing Director for 5 years, and has also worked at organizations including Agora, Investopedia, TD Ameritrade, Forbes, Nasdaq.com, and IBM. Demand for options can change quickly and option prices can become Acciones google inflated as IV rises. In summary, eToro is an excellent choice for beginner and intermediate options traders looking for an accessible platform with copy trading. As volatility percentages increase, traders may recognize option market values becoming inflated.

As a result, the implied volatility for the stock’s options has what does a python developer do risen to 40%. Traders could then use these standard deviation levels to help set their expectations for potential price moves and to assist in strategies like setting stop-loss levels or target prices. Of course, these are just statistical probabilities based on the implied volatility.

The current state of the general market is also incorporated in Implied Volatility. Generally, when you see IV spikes like this, they are short-lived, but be aware that things can and do get worse, such as in 2008. Understanding volatility is not only crucial, but also a fascinating part of trading. Understanding the relationship between implied and realised volatility is crucial for making informed trading decisions. We start by pulling up the Expected Move for Palantir in the options section. Looking at the data, we can see how the IV Rank and IV Percentile skyrocketed on October 30th, the day when the stock dropped by 35%.

SHARE NOW

Leave a Reply

Your email address will not be published. Required fields are marked *